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Chern-Simons Action on a Finite Point Space
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Received

We apply Connes’ noncommutative geometry to a finite point space. The explicit Chern—
Simons action on this finite point space is obtained.
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1. INTRODUCTION

Discrete spaces and corresponding physical theories have been discussed
extentively in the literature. See, for example, Bombelli ef al. (1987), Feynman
(1982), Finkelstein (1969), Minsky (1982), Ruark (1931), Snyder (1947), ’t Hooft
(1990), and Yamamoto (1984, 1985). In the framework of Connes’ noncommuta-
tive geometry (Connes, 1985, 1994), finite spaces have been considered to build
models in particle physics (Chamseddine et al., 1993; Chamseddine and Connes,
1996, 1997; Connes, 1990, 1995, 1996; Connes and Lott, 1990; Coquereaux
et al., 1991; Kastler, 1993, 1996; Varilly and Gracia-Bondia, 1993). Differen-
tial calculus and gauge theories on finite spaces or finite groups were proposed
in Cammarata and Coquereaux (1995), Dimakis and Miiller-Hoissen (1994a,b),
Krajewski (19980, Paschke and Sitarz (1996), Sitarz (1992, 1995) and references
therein. The explicit actions of gauge fields on finite point spaces were obtained
in Hu (2000) and Hu and Sant’ Anna (2002, 2003).

In this paper we apply Connes’ noncommutative geometry to a finite point
space. The explicit Chern—Simons action on this finite point space is obtained.

2. DIFFERENTIAL CALCULUS ON A n-POINT SPACE

We briefly review the differential calculus on a n-point space. More detailed
account of the construction can be found in Cammarata and Coquereaux (1995),
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Dimakis and Miiller-Hoissen (1994a,b), Hu (2000), and Hu and Sant’ Anna (2002,
2003).

Let M be aspace of n pointsiy, ..., i, (n < 00),and .4 the algebra of complex
functions on M with (fg)(i) = f(i)g(i). Let p; € A defined by

pi(j) = éij. (H
It follows that p; is a projectorin A (i = 1, ..., n). Each f € A can be written as

f=3fop

where f (i) € C, a complex number. The algebra A can be extended to a universal
differential algebra Q(A) = @ ,Q2"(A) (where Q°(A) = A) via the action of a
linear operator d : Q"(A) — Q" F!(A) satifying

d1=0, d*=0, dwo)=dw)o + (1w do,

where w, € Q" (A). 1 is the unit in Q(A).
From the above properties, the set of projectors p; satisfy the following
relations:

pidp; = —(dpi)p; + d;;dpi, (2)

Q(A) is an involutive algebra given by
(aoday - --day)* =da}---dajag,

where ag, ay, ..., a, € A.

The universal first order differential calculus Q! is generated by p;dp i # ),
i,j=1,2,...,n. Notice that p;dp; is the linear combinations of p;dp;(i # j).
The compositions of p;dp;(i # j), i, j =1,2,...,n, generate the higher order
universal differential calculus on M.

Let £ = A" be a free A-module. A connection on £ is alinearmap V : £ —
E ®4 Q'(A) such that

V(Wa) = (V¥)a + ¥ ® da, 4

forall W e £,a € A.

Any connection on £ is of the form V = d + A with A* = —A. A is called
a connection 1-form. We can regard A as an element of M,,(A) ® 4 Q'(A). Here
M, (A)isam x m matrix algebra over .A. A can be written as A = Zi,/’ A;jpidp;
with A;; € M,,,(C), am x m complex matrix, and A;; =0, am X m zero matrix.
Especially, A* = — >, A% pidp,. From A* = —A, we have

AL = Aj. ®)
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Notice that the structure of A;; is independent of the universal differential algebra
Q(A) over M. This means

A= Z Aijpidpj = ZpideAij. (6)
i,j i,j

Let G C End 4(§) = M,,(A) be a gauge group of £. Then G =), G; p; with
G, ¢ M,,(C). Notice that

Gi=Gy = =G, =G. )
There is a natural action of G on the space of connections given by
Vi=gVe W gV,
with W € £ and g € G. The connection 1-form A satisfies
A'=gAg™! +gdg™". ®)

Hereg=) . gipi€G,and g € G, =G.
The curvature of V is defined by F = V2. It follows that

F =dA+ A% 9)

F transforms in the usual way, F’ = gFg~'. From (dA)* = —dA* = dA and
(A%)* = A%, onehas F* = F.
The Chern—Simons action on M reads

2
S =TrAdA + §TrA3. (10)

3. FROM FREDHOLM MODULE TO CHERN-SIMONS ACTION ON M

One of the basic ideas in Connes’ noncommutative differential geometry is the
Fredholm module (Connes, 1994, and references therein). Applying the Fredholm
module to the universal algebra Q(A) discussed in the previous section, one can
obtain an explicit Chern—Simons action on the finite space M.

The Fredholm module (A, H, D) is composed as the following (Hu, 2000;
Hu and Sant’Anna, 2002, 2003): A is the algebra on M defined in the previous
section. H is a n-dimensional linear space over the complex field C, i.e., H is just
the direct sum H = @!_,H;, H; = C. The action of A on H is given by

f 0 .. 0

0 2) .. 0
2(f) = Q@)

0 0 .. f
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with f € A. D is a Hermitian n x n matrix with D;; = 5_,',', and D;; is a linear
mapping from H; to H;. The following equality defines an involutive representa-
tion of Q(A) in H,

n(da) = [D, n(a)l, (11
where a € A. To ensure the differential d satisfies
d* =0, (12)
one has to impose the following condition on D,
D? = i1, (13)

where p is a real constant and / is the n x n identity matrix. Since the diagonal
elements of D commute exactly with the action of A, we can ignore the diagonal
elements of D, i.e.,

D;i = 0. (14)

The projector p; can be expressed as a n X n matrix,

(T (Pi))ap = 8aidpi- (15)
From Egs. (11) and (15), it follows that
(7w (pidp))ap = 8aidp; Dij- (16)

Connection matrix. The connection matrix H on M is given by
Hij = Dij(Ajj + 1). (17)

Here 1 is the identity in the gauge group G, where G is defind in Eq. (7). One
can find that H;; is a m X m complex matrix with Hi’; = Hj;. This means that
H = (H;j)is an x n Hermitian matrix with its elements m x m submatrices. The
diagonal elements of H satisfy

H;; =0. (18)
From (8) and (17), the transformation rule of H;; reads
H/, = giH;;g7". (19)
Hermitian matrix D. The Hermitian matrix D is defined by
D = (D;;) = (D;;1). (20)
From (13), one has
D? = 4’1, (1)

where I = (Il‘j) = (8,']‘1).
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Curvature matrix. Applying the Fredholm module to the Eq. (9), one has
n(dA)=[D,H — D], =D(H — D)+ (H —D)D,
(A% = (H — D)%
It follows that
7(F)=H?— i*L (22)

7 (F) is called the curvature matrix on M. The transformation rule of 7 (F;;)
satisfies

w(F) = gim(Fipg; " (23)

Bianchi identity. From m(dF +AF —FA)=[H,n(F)]=[H,H? -
w?I] = 0, one has the Bianchi identity on the finite space M

[H, 7(F)] =0. 24
Theorem. The Chern—Simons action on a finite point space M takes the form
S = %TrH 3.Here H is the connection matrix on M . S is invariant under the gauge
transformation (19).
Proof: By making use of the Fredholm module, one has the following formulae,
n(AdA) = (H —D)[D, H — D],
Trr(AdA) = 2Te(DH?),
n(A%) = (H - D),
2 3 2 3 2
gTrn(A )= gTrH —2Tr(DH*).

The action S reads

2 2
S = Trr(AdA) + ng(/ﬁ) = gTrH3. (25)
It is obviously that S is unchanged under the gauge transformation (19). |

Example. The U (1) Chern—Simons action on M also takes the form

2 3
§ = 3TeH’, (26)

where H;; is a complex number (i, j =1, ..., n).



1466 Hu and Sant’Anna

4. DISCUSSION

By applying Connes’ noncommutative geometry to a finite point space. We
have obtained the explicit Chern—Simons action on this finite point space. It sug-
gests that the cubic interaction in quantum field theory may have its geometric
origin.
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